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Abstract

This report presents analyses of sixteen models from the Atmospheric Model Intercomparison
Project I (AMIP2) over the Ausfralian region. It is focused on aséessing how well éurface climate
and fluxes over this region are simulated in current Atmospheric General Circulation Models
(AGCMs) forced by observed -sea surface temperatures (SSTs). The importance of land-surface
modelling on model predictability is also investigated. In this preliminary analysis, the Bureéu of
Meteorolog'y (BoM) qbservational rainfall, temperature and surface .evapotranspiration datasets are
used in validating surface climatologies simulated by fhe 16 models. Specifically, the Linear Error
in Probability Space:(LEPS) score is calculated in assessing the skill of the rﬁodels in simulating
surface climate anomalies for the 17-year period (1979 to 1995). Numerous model differences are
seen with some aspects of the ﬁlodel performance being linked to the complexity of land-sufface

schemes used. The connection between model skill in simulating surface climate anomalies and

. surface flux anomalies is explored.

Laé—cérrelation analysis is conducted. Results reveal tﬁat “climatic memory” derived from land-
surface processes (e.g. soil moisture) has different featuresvin the sixteen models: some models
show rapid feedback processes between land-surface and the overlying atmosphere, while others
show slowly varying proceéses in which anomalous surface conditions have impacts on the model
integrations on longer time-scales. It is found that models with simple bucket-type scheme tend-to
have .a more rapid decay rate in the retention of soil moisture anomalies, and therefore, soil

moisture conditions have a much weaker influence on forecasting surface climate anomalies. This

“study suggests that land-surface modelling has the potential to influence AGCM predictability on

seasonal and even longer time scales.



1. Introduction

Over the last decade, the Atmospheﬁc Model Intercomparison Project (AMIP) oas evolved as a
standard framework for evaluating state-of-art Atmospheric General Circulation Models (AGCMs)
in their simulations of current climate system. Gates et al. (1999) summarised the "sciéntiﬁcl findings
and contributions from the first phase of AMIP. Comparing model simulations with observations
and contrasting results among models have helped to identify the strengths and weaknesses in
current AGCMs and thus pinpoint areas where offorts are needed to improve the ability to simulate
the current climate and predict future climates. AMIP1 outcomes are largely achieved by the
analyses of model dynamical and physical processes through diagnostic subprojecfs (Gates et al.,
1999). The AMIP I diagnostic subproject 12, forms part of the Project for Intércomparison of Land-
surface Parameterization Schemes (PILPS) (HendersonSellers et al,, 1996), is dedicated to
evaluating AGCM simulations of ‘surface energy and water budgets aﬁd their components, and to
assessing the role of land-surfaco.paraméterisations in AGCM simulations. As summariééd,by
Henderson-Sellers (1999), the major findings from AMIP I subpfoject 12 were that: (i) nov“-best"’ o
land-surface simulation could be identified with every model showing ﬁnsatisfactory results in
some respect (Love and Henderson-Sellers, 1994); (1) é.ome models fa.iled to conserve surface
energy and water balahces, with pronounced trends in moisture stores (Love et al., 1995); and (iii)
energy and water paﬁitioning showed larger model discrepancies than those seen in PILPS ofﬂino ,

intercomparisons (Irannejad et al., 1995; Qu and Henderson—Sé‘llers, 1998).

Assessing the role of land-surface parameterisations in AGCM simulations remains a key area in

weather and climate fnodelling (e.g., Zhang et al., 2001; 2002) and is further pursued in the AMIP



phase II (AMIP2) experiments. Phillips et' al. (2002) outlinéd the overall scientific plans in AMIP2
subprqje_ct 12. Like its predecessor, this is aimed to assess the degree to which model performance
in simulating land-surface climate is related to the complexity of land-surface schemes employed.
In contrast with AMIP I, there are a number of advantages of analysing AMIP2 experiments in
relation to the study of land-surface processes in global climate system. These include: (i) a greater
variety of complexity in land-surface schemes employed; (ii) better -control of the model
initialisation and spin-up processes; and (iii) more variable outputs iwhich help to characterize land-
surface processes. In a pilot study of this AMIP2 diagnostic -aubproject, fhillips et al. (2000)
proposed some scientific approaches for the explonation of spatio-temporal variability of land-

surface simulations from AMIP2.

This study is focused on assessing the performance of AMIP2 models over the Australian region

(see e.g. Figure 2). There are two main goals: (a) to deliver an evaluation of current AGCMs’ -

simulations of observed climate over this region; and (b) to try to establish whether, and’

potentially, how, land-surface processes and parameterisations affect the model predictability of -
climate anomalies on seasonal and longer time scales (e.g., Zhang and Frederiksen, 2001). As a
first step, the focus of the preliminary 'analysisﬁ is centred on three questions (i) how different the
models are in simulating key surface climate variables such as precipitation and surface
temperature; (ii) how different the models are in simulating land-surface fluxes (latent and sensible

heat fluxes); and (iii) whether there is any connection between the model skill in simulating surface

flux anomalies and in predicting surface climate anomalies.



There are sound scientific reasons for proposing that land-s.urface modelling could affect model
predictabilify. Primarily, different representation of land-surface processes may affect the timé
scale of feedbacks between the land-surface and the atmosphere. For example, considering how soil
moisture is simulated in GCMs, three main characterisations can be identified. In a oﬁe-lay;:r
bucket-type model (e.g., Manabe, 1969), soil moisture is governed by

pH%:P—E-—R—D (1)

where H is soil depth, A is water density, w is volumetric soil water content, P is precipitation, E is
surface evaporation, R is surface runoff and D is drainage term. In this type of parameterisation, the

occurrence of runoff is determined by whether soil moisture is above a critical value (field

capacity). No runoff is simulated until the whole volumetric soil is saturated. At the same time,

there is a direct feedback between evaporation and soil moisture with no hydraulic diffusion

process controlling the water movement inside soil. In this regard, the bucket-type soil hydrological

“model tends to simulate a rapid response of bare soil wetness to changes in atmospheric forcing.

Meanwhile, Scott et al. (1997) found that in regions with dense canopy coverage, bucket models
showed relatively slow response of evapotranspiration to precipitation forcing as there is a lack of
canopy interception component in such models to reflect the rapid canopy transpiration of

intercepted water.

An intermediate scheme in soil moisture simulation is the so-called Brce-restore model in which

there is a thin top layer and a deep soil layer. Soil moisture in these two layers is governed by

2)
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where w; and w; are the soil moisture in the upper and deep layers. d; and d; are the depths of these
two sbil layers, E, and E, represent ground evaporation and canopy transpiration, wg. is the soil
moisture when gravity force balances soil capillarity force, and ¥} is the force-restore time scale. In
this scheme, two different time scales are involved in representing the feedbacks between land and
the atmosphere: there is a rapid response to the atmospheric forcing in :the top thin layer and a slow
restore pfocess in the deep layer by soil moisture supply from deep soil to the upper layler for
surface evaporation. Surface runoff occurs when the upper layer is saturated even though the deep
layer may still be unsaturated and a contribution from canopy tranépiration is included in the total

evapotranspiration.

' The opposite extreme from the “bucket” is a multk layer soil model. This type of scheme has been

developed to fully couple soil hydraulic diffusion processes with canopy and root- zone processes of

water flow in the soil.
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where 2 is soil water content, ¢ is Darcian soil water flux density and S is a sink term which
includes root water uptake affected by root density and distribution, canopy transpiration and in

some schemes even horizontal runoff.

Comparing the three approaches to simulating soil moisture in GCMs, it is clear that different
complexities in the land-surface parameterisation may affect model predictability. For instance,

considering how soil moisture responses to meteorological forcing with bare soil surface condition:
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e In single-layer bucket-type models: volumetric soil moisture depletes (fills) immediately
when evaporation (precipitation) occurs. This leads to a rapid response from the land-
* surface to any atmospheric forcing and a short “memory” of soil moisture in the climate

system and, ultimately, a less predictable land-surface component in the overall model.

e In force-restore and multilayer scheme: deep soil water depletes (fills) by first difﬁsing
-through upper-layer and then evaporation from (after precipitation onto) surface. This leads
to slower restoring responses within the soil lgyers, and thus to a longer “memory” of land-

surface processes in the climate system, ultimately to a more predictable Vcomponenit n fhe

overall model.

In recent yéars, there have been a riur’nber of studies focused on assessing the degree to which land-
surface parameterisations .can affect the predictability of climate models. Koster and Suarez (1996)
investigated the influence of soil moisture retention on precipitation statistics. Scott et al. (1997)
studied the .timescales of land-surface evapotranspiration responses in the land-air .feedback

processes. Recently, Koster and Suarez (2001) reported on a study of soil moisture memory in

_climate models by constructing a soil moisture auto-correlation equation with components

representing the nonstationary effects of atmospheric forcing, evaporation, runoff, and the
correlation of atmospheric forcing with soil moisture condition. As AMIP2 models use a wide
range of land-surface parameterisations, analysing results from AMIP2 simulations may offer some .

insight to understanding the relationships among physical processes parameterised.
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This report presents preliminary analysis of sixteen AMIP2 model experiments. As a first step

‘towards understanding the impacts of land-surface modelling on GCM simulations, the current

report serves primarily to demonstrate differences amoﬁg model simulations. The explanatiori of
these differences is cuﬁently under intensive research and will be reported later. This report is -
structured as follows: Section 2 describes the AMIP2 models in this study and particularly the land-
surface» components in ;[hese models. In addition, validation datasets used in this analysis are

introduced here. The skill of the models in simulating surface climatologies is described in Section

3. Section 4 presents the model skill in simulating the variations of surface climate and fluxes.

Section 5 explofes connections between model skill in simulating climate and surface flux
anomalies. The results of lag correlation analyses are presented in Section 6 to initiate examination
of whether land-surface parameterisations in GCMs affect model predictability. Finally, discussions

and preliminary conclusions from the current analysis are presented in Section 7.

2. Models and Validation Data Used in the Analysis

Seventeen-year (1979-1995) AMIP2 simillations from sixteen AGCMs have been reléaéed at the
time of thjsA report.b Table 1 lists the models uséd in the study, which include well-known research =
institutes and organisations. However, the models will remain anonymous 4in the rest of the
analysis. .;F_éble 2 summarises some key aspects of the.model conﬁ@mtions which are directly
related to the focus of this study. It should be emphasised here that t_he purpose of this study is not
to identify' the best model(s), rather it is dedicated to irhproving understanding of model
performance following the model physics. As shown in Table 2, there is a great variety of land-

surface complexities in these models, rahging from simple Manabe-type bucket models with no



canopy related processes, intermediate bucket plus simple canopy stomatal resistance schgmes, and
finally, schemes with fully paraméterised canopy processes aﬂd inéorporated carborrcycles. The
soil hydroloéy cqmponent' varies from the simple one-layer bucket schemé, through tW(-)-layer.
force-restore approaches to multk layer soil schemes. Such diversity in complexity in land-sﬁfface

schemes providés a good opportunity to study the role of _land—surfacé parameterisation in climate

~ simulations.

As noted by Phillips et al. (2000), the lack of high quali£y and globally consistent continental—scéie
observations 6f land-sufface variables, such as surface heat fluxes, soil moisture and runoff,
hampers the evaluation of GCM model performance. This study uses available observational
datasets and modelderived reanalysis datasets while recoghisiﬁg the dc;ﬁ_ciencies”in both tyvpes. of
validation data (e.g.,x Irannejad, et al., 20015. The Australian Bureau of Meteorology (BoM)
observed rainfall 'and temperature datasets are employed for validation of _mbdél simulated sﬁrface
climate. These latter data, originally formed on 0.25° by 0.25° grids, have Been transformed to the

common T62 grids to which all the sixteen AMIP2 models have been regridded. The BoM

A evapotranspiration climatology (Wang et al., 20()1) is used in the evaluation of surface evaporation

simulations. These data have been derived using the formulation of Morton (1983) and observed
meteorological forcing (precipitation, temperature, radiation Aetc.), together with observed niver

discharge and observed precipitation in the calibration designed to conserve surface water balance.

The NCEP/DOE AMIP2 reanalysis (http: //wesley.wwb. noaa. gov/reanalysis2/) for

the period of 1979 to 1995 is also used in later part of the study which examines the correlation
between model skill in simulating surface climate anomalies and skill in simulating surface flux

anomalies.
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Besides the calculation of standard measurements,‘ such as root-mean-square-error (RMSE), biases
and spatial and temporal correlations between model results and observations, Linear Error in
Probability Space (LEPS) skill score (Potts et al., 1996) is also used in this study: This score is
related to the difference between the position of the simulation and the observation in thel

cumulative probability distribution space of the particular climate variable under consideration.

. This skill score has been used in the verification of the BoM statistical seasonal forecasting system

(e.g., Jones, 1998; Drosdowsky and Chambers, 2001) and in the assessment of the BMRC

experimental AGCM seasonal forecasts (Frederiksen et al., 2001).

For individual simulations, if the position of the simulation in the cumulative distribution in the
model is- F; (ranging from 0.0'— 1.0) and that of the observation is P,, then the LEPS skill score
(Potts et al., 1996) is defined to be

S=3(1-|P, ~B}tP, =P, +B - P)-1. - )

To achieve a skill score range from 100% to —100%, average skill (SK) may be defined (Potts et

al., 1996) as

1008
S, ’ (6)

Here the summation is over all pairs of simulations and observations, where S is the individual

SK =

score for each forecast, and S, depends on whether the numerator is positive or negative. For a
positive numerator, S, is the sum of the maximum possible scores given the observations
(obtained by setting F, = B, in Equation 5. If the numerator is negative, S, is the sum of the

m

moduli of the worst possible scores given the observations, obtained by setting either F, =1.0 or

10



P, =0.0 in Equation 5 and taking the negative value with the largest modulus. As shown by Potts

et al. (1996), the relationship between LEPS score and correlation coefficient is nonlinear, which is
a function of standard deviation of model simulations: a LEPS score of zero corresponding to zero

correlation and a LEISS score of 30% roughly corresponding to a correlation coefficient of 0.5.

Considering that there likely are to be large differences between the cumulative probability
distribution derived from the model simulations and the observations, we calculate Prand Py using
the modelsimulated cumulative probability distribution (derive(i from the model 17-year {\MIPZ
integration) and observed cumulative .probability distribution (derived from 50-year observations
from 1950 to 1999);- resbectively. This is different from Ffederiksen et al (2001) in which both
model simulations and observations are réferred to observed cumulative probability distributions.
As discussed in Potts et al. (1996), the appr‘oach used in this study is more apprqpriate‘ for

estimating the potential predictability in the models.
3. Surface climatologies of sixteen AMIP2 models

At ﬁrst; we briefly discuss some fundamental features of observed surface climatologies over the
Australian region. These climatologies will then be ‘used' in evaluating model simulated
climatologies. Figure 1 shows the surface climatologies using the BoM’s observational datasets.
Rainfall, monthly mean daily maximum surface temperature (;l"max) and monthly mean daily
minimum surface tefnp_erature (Tmin) climatologies are the averages over the period of 1950 to
1999, while sﬁrfaée evaporation climatology ‘is from Wang et al. (2001). Figures 1(a) and (b)

display significant seasonal variations of rainfall distributions in DJF and JJA. In the austral

11
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summer, the Australian monsoon produces heavy rainfail over the northern and eastern part of the
continent. P;ec_ipitation’ is low in the cenﬁ‘él, western and southern regions. In JJA, large rainfaﬁ is
observed in the southern and western parts of the region, and precipitation is low in the central and
north. Both Tmax and Tmin exhibit significant shifts seasonally follm;ving the sun, and it is
generally cooler in the south and Qarmer in the north and. central regions.. Surface evaporation
climatologies in DJF and JJA demonstrate e; dry feature of the continent, with low surface

evapotranspiration over a large part of the continent in both seasons. Surface evaporation exceeding

80 Wm? only occurs over the northern and eastern parts of the continent in the summer monsoon

rainy season.

Figure 2 shows the biases of seasonally averaged precipitation climatologies from the sixteen
AMIP2 models against the observed climatology for the period 1950 to 1999'-hf;ro'rn the BoM data.
In the austral summer season (DJF), about half of the models overestimate the rainfall climétology
over a large part of the continent, with models B, F, N and P having greater than 50 mm month‘l
positive biases over a large part of the cbntinent. Models A and D have systematic negative biases
over the whole continent. In JJA, precipitatioh biases are much weaker in most of the models
compared with DJF; Except for models E, M and O, most of the models show positive biases in the

eastern part of the continent and most models exhibit negative biases in the south.

The area-averaged root-mean-square-error (RMSE) of the model climatologies over the continent is
shown in Figure 3. Simulations from a “poor-mans ensemble”, generated by simply averaging all
the model simulations throughout the 17-year period as a set of new simulations, are also included

for comparison. In agreement with results from Figure 2, RMSE is generally higher in the austral

12



summef season, with model P being the significant outlier. AS'fbund by Bbert (2001) and Love et

al. (1995), such a simple averaging all the model simulations (poor-man’s eﬁsembles) gives the best

-overall RMSE results.

Despite the large biases seen in Figure 2, the spatial pattern of rainfall climatology and its seasonal
migration associated with the Australian monsoon system are reasonably well simulated by most of

the AMIP2 models (Figure 4). The spatial correlations with observed rainfall 'climatology afe

* around 0.8 for most models in the summer season, but the correlation drdps to about 0.6 in the

austral winter season. Of the sixteen models, C and P have the largest seasonal varations of the
spatial correlation, with models C and P giving the  poorest simulation of winter :rainfall

distribution.

Climétological biases of monthly averaged daily. maximum surfacé femperamre (Tmax) bétween
model simulations and the BoM obgserv’atyions are shown in Figure 5. In the austral summer season
(Figﬁre 5a), the bias can be as large as 5 to ‘1‘0 °C. Most models un‘d-erestivmatév the daily Tmax in the
northern and eastern parts of Australia with models F, G, N, O and P having negative biases of
above 5 °C. Most modéis also tend to overestimate Tmax in the southern part of the continent by 2
to 5 °C. In contrast, models. A, H and M show systematic_positive biases over the whole continent
and models G and O have' sysftematic negative biases. In the austral winter (Figure 5b), most
models tend to underestimate Tniax except models A, B, E, H and M, which have positive biases
over much o.f the continent. Models F, G, N and O héve systematic negative biases over almost the

v

whole continent, with the largest biases seen in Model O of 5 to 10 °C. Referring to Table 2, results

13



suggest that models with a lower number of levels in soil temperature calculations than the average

are likely to be part of the outliers.

Area-averaged RMSE in Figure 6 demonstrate that the models have relatively low errors i the

~ winter Tmax simulations and, again, the poor-man ensembles outperform most models. Figure 6

shows tﬁat models‘ H and O have larger RMSE than the others, with a large seasonal feature in
model H. In contrast to the results seen in RMSE, results of spatial correlations with observed
Tmax climatology (Figure 7) show that the pattern of Tmax distribution in most models are similar
to the observed, particularly in the winter season. There are large Iﬁodel discrépancies in the results
from October to March, with models H, N, O and P showing lowey skill. Together the results in
Figures 5 to 7, tends to suggest that models O and P (with one-layer bucket type land-surface
schemes) exhibit poorer performance in thg simulation of Tmax climatology than the others. The
poor performance of model H is also consistent with the relatively low number of soil‘ layefs n its

calculations of surface energy balance (ref. Table 2).

Figure 8 shows the climatological biases between model simulated and observed daily minimum

surface temperature (Tmin) in DJF and JJA. In DJF, some models (e.g. A, D, F, J and M) show

- similar features to their Tmax simulations while others exhibit many differences. For instance,

models G, H and K show almbst oppoSite biases ﬁom those in Tmax. Model H has positive biases -
in Tméx and negative biases in Tmin, resulting in significant overestimation of daily temperature
variation in DJF (Figure 11a). In contrast, models G and O have lower Tmax and higher Tmin,
leading. to the underestimation of daily temperature variations in this season. Except for some -

outliers, results from daily temperature range (Tmax-Tmin) in Figure 11a suggest that the biases of

14
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surface temperature daily range are between 2 to 5 °C, smaller than the biases in Tmax and Tmin

~

individually..

Similar results are seen in Tmin simulations in JJA with modéls G, H and O showing biases
opposite to those in Tmax. Conseqliently, the daily temperature range is poorly _»simuliated in these
models (Figure 11b). Area—averaged RMSE (Figure 9) shows that 'models B, G, Hand N have
larger errors than most of the others in simulating Tniin climatology. Howei/ér, models C, L, N, O
and P generate relatively poorer simulations of the spatial distributions of Tmin in Australian
region (Figure 10). Combining results from Figures 5 and 11, it seems that models O arid P (with -
oné- layer formula for the surface energy balance), together with models having lower number of
layer; in calculating surface temperature (e.g., models' G and H), are‘ more likely: poorer at -

simulating the Tmax and Tmin climatological distributions in the season from October to March. In -

addition, models C and L exhibit different capability in Tmax and Tmin simulations.

Using the BoM evapotranspiration climatology data from Wang et al. (2001), the sixtéen AMIP2
model-simulated surface evaporation climatologies are evaluated in Figures 12 to 14. In.DJF, there

are quite large differences among the model simulations, with most models showing 20 to 50‘Wm'2

-biases over the continent. Models A, D, I and M have large negative biases over much of the

continent, while, B, F, N and P show systematic positive biases in DJF. In addition, the majority of
the models underestimate surface evaporation over the central western dry region. Comparing these

conclusions with the Tmax results in Figure 5a, tends to suggest that when surface evaporation is

“underestimated, the models have positive biases in Tmax simulations and vice versa. However,

some models do exhibit different features. For instance, model B overestimates evaporation over

15
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much of the continent but it shows negative biases over the north. Similarly? model H has positive
biases over the whole continent in Tmax simulations but underestimates surface evaporation in the
north. Similarly, the relationship between evaporation and Tmin simulations varies with models.
There is no obvious coherence between the biases in surface evaporation simulation and Tmax and

Tmin simulations, and some models show closer linkage than others. -

In JJA, the biases simulated in most models iend to be weaker than in DJF, a feature also seen ini
the area-averaged RMSE in Figure 13. For instance, models B, F and N show much weaker
positive biases in the simulations of winter surface evaporation climatology. Large biases:in the
coastal region in models K and L occur in both JJA and DJF. Such biases contribute to the large
RMSE results in Figure 13. In addition, model P exhibits large RMSES in most of the months
except in the winter season. The pa&ern of evaporation climatology is reasonably reproduced by a
large number of models (Figure 14), with higher correlation in the summer than in winter season.
Howevef, there are also a number of models, in particular, models K, L, M and P, which have low

skill in simulating the spatial distribution of surface evaporation.

Overall, in this section, the performance of sixteen AMIP2 models in simulating surface
climatology over the Australian region has been evaluated by the calculation of climatological
biases, RMSE and spatial correlations. In the following section, the model skill in simulating

climate variations over this region is assessed.

16
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4. Results of the AMIP2 models in simulating surface climate anomalies

One of the purposes of this study is to assess the predictability of climate anomalies over this
region. To this end, the skill of each model in simulating monthly precipitation and Tmax and Tmin

anomalies for the 17-year AMIP period is presented here.

Figure 15 shows the mddel skill in simulating monthly precipitation anomalies against the BoM
observational data. Model simulated anomalies are relative to fhe 17-year climatology from the
model simulations. Also, the cumulative pi'obability distribution of such anomalies derived from
each model is used in the LEPS calculéﬁons, together with the distn'b_ution derived from the
observations. As shown in Figure 15a, most of the models exhibit rather limited skill in simulating
rainfall anomalies in DJF. There is also no coherence about regions where most models have (or do
not have) skill. The majority of the models do not shbw skill in simulating rainfall variations in the
north and northeast where the Australian summer monsoon dominates. Pért of the skill seen in the
central region may be due to the consistently dry climate here. In the austral winter season (JJA),
the model skill in simulating rainfall anomalies is better than that in DJF. This is particularly 'clear
in models B, D, F and M. Area-averaged LEPS score (not shown) also suggest mdre skill in the
winter season, as do statistiéal seasonal forecasting ‘systems (e.g., Drosdowsky and Chambers,
2001). In this season, models D, F and M outperform most dhers in simulating winter rainfall

variations.
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Even 'though there is little or no coherence in the model LEPS score of Tmax simﬁlatibns, the
spatial distribution of each model’s LEPS score is much smoother (Figure 16) than the‘ model skill
for rainfall variations. The BoM statistical seasonal forecasting system (e.g., Jones, 1998) has
reasohable skiil in Tmax forecasting over the eastern part of the continent in DJF, but thié is not
commonly seen in the AMIP2 model simulations (Figure 16a), of which only half of the models (A,
E, G, J, L, M and N) show skill in this region. The model skill is rﬁoderately improved in JJA
(Figure 16b) with models A, D, F, and M exhibiting reasonable skill over fnuch of the continent.
This is in agreement with the BoM statistical model, which also shows skill ovef extensive areas of

the continent in JJA (Jones, 1998).

In the summer season (DJF), results from Figure 17a show that the skill of most of the models in -

~ simulating Tmin variations has broadly similar features to those seen in Tmax. These similarities -

~ are not retained in the winter season (Figure 17b). For instance, models A and F have skill in Tmax

simulations in the eastern paft of the continent, while rather poor model skill is seen in the Tmin -

simulations for the same region. Such différences are, to some extent, also found in the skill of

~ statistical models in forecasting Tmax and Tmin anomalies over the Australian region (Jones,

1998).

As there are no multiyear surface evaporation data available, only the climatology used in Section
3, we cannot calculate the LEPS score of each model in simulating surface evaporation variation _
over the Australian region. However, in the next section, such skill will be assessed by comparison

with the NCAR/DOE reanalysis datasets.
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' 5. Linkage between model skill in simulating anomalies of surface climate and fluxes

i
V

In Section 4, we have assessed of the performance of the AMIP2 niodels over the Australian region
in terms 0f ‘the model skill in simulating surface climate variations from the model 17-yr
integrations. We next examine Whethér the skill of the models in simulating surface climate is
linked to the skill of the models in simulating surface fluxes. If mefeorological forcing, such as
radiation, rainfall, temperature etc, is the dominaﬁt factor in the model sirﬁulations of surface fluxes,
then good correlations between the LEPS score of surface élimate and LEPS of surface fluxes in
the model simulations would be expected. In contrast, low correlations would suggest -that
differehges in complexity and approach used in fepreéehting the land-surface processes'are

important for air-land interaction simulations.

As there are no multiyear observed surface flux datasets available, the 17-yr NCAR/DOE -

~ reanalysis is employed in calculating the LEPS score of each model’s surface latent and sensible

heat fluxes. To be consistent, each model’s LEPS score in rainfall and surface temperature
simulations is re-calculated by using the same reanalysis' data. Correlations of the LEPS scores of

the: models in simulating surface climate anomalies (temperature, precipitation and soil moisture)

~ and surface flux anomalies (latent and sensible heat fluxes) are 'also analysed. It should be noted

that there are deficiencies in the reanalysis data (e.g., Irannejad et al., 2001) and that there are
incompatibilities of some fields (e.g., total soil moisture) between models and reanalysis. However,
as emphasis is on the connections between the LEPS scores rather than on the LEPS scores

themselves, use of the reanalysis data for this part of calculation is reasonable (even though not

desirable). In addition, applying both the cumulative probébility distributions derived from model

19



I

simulations and from the reanalysis data in the LEPS calculations further alleviates the impacts of

the deficiencies in the reanalysis dataset on this part of the study.

Figure lSé shows the correlation of LEPS sé‘ores in‘t.he model simulations of precipitation
anomalies and surfacé evaporation anomalies over the 17-yr AMIP2 period for the 16 AGCMs. The
averaged correlation coefﬁcienf (heavy dashed line) is about 0.3 to 0.6, with large variétions
be&een .models. Figure 18a shggesfs that the-c'onnection between 'these t§vo skills in model
simulation is more inronounced in the austral summer seasoﬁ. This feature is clearer in the results
from the poor-man. ensembles (heavy solid line). To illustraté this feature further, Figure 19
presents scatter plotsv of rainfall and surface evaporatidn LEPS scorés over the Australian region
from one of the models. In the summer season, correlation between the twq LEPS: écores ‘can be
seen. When the lﬂodel LEPS score for simulating the precipitation anomalies is high, there also is a

high LEPS score in simulating surface evaporation anomalies.

As AMIP2 results are from experiments that inqluéie complex coupled land-atmosphere
interactions, it is difficult to identify cause ‘and effect relationships. For example, does a good
simulatio'n of precipitation lead to more ékilﬁll simulation of surface evaporation, or, does
successful representation of surface ev.aporatvi'on (captufing. surface water recycling) contribute to
the model skill in rainfall simulations? Detailed, process analysis (to be reported separately)
suggests that during the summer séason, surface radiative forcing is sufficient in this region and as
a conseqﬁence, surface water availability constrains_the surface evaporation processes in most
models. Therefore, it is reasonable to attribute higher LEPS score in a given model surface

evaporation simulation to skilful simulation of precipitation anomalies. In contrast, during the
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austrél Winter (Figure 19b), there is virtually no correlation between the skill of the model in
simulating rainfall anomalies and skill in simulating surface evaporation anomalies. Thus, even if a
model has reasonable skill in simulating rainfall anomalies, this d(;es not deliver %kill in simulating ’
surfaée evaporation anomalies. These results suggest that in the winter, surface flux simulations are
not dominated by the meteorological forcing simulated in the model. Model representation of
surface energy and water partitions plays a significant role in simulating-the variation of surface
fluxes in tﬁis season. It should be pointed oﬁt that such relationships seen over the Ausfralian
continent might be diffe;ent from results in other regions with different climates. This will be

studied by further analysis of model results over different regions in the future.

vIn contrast fo the relationships seen in Figure 18a, the model skill in simulating soil moisture
anomalies derived from the reanalysis data is only loosely cor_rélated With precipitation anomalies
from the reanalysis (Figure 18b). As discussed before, soil moisturé in the reanalglsis may be quite
different from the models. Nevertheless, ouf inte.rest here is not on the model skill of r;aproducing
the soil moisture variations in the reanalysis, but on the Comeétion between LEPS scores in rainféll
and soil moisture simulations. The scatter among the models in Figure 18b .is also larger than seen
in Figure 18a. These results suggest that variations of soil moisture in the models -are not solely
determined by rainfall simulations. Réther, soil moisture seems to be determined by surface
hydrological procéss parameterisation in the models. In addition, results here indicate that
improvement and widened application of numericall model forecasts of climate anomalies will
require better treatment of hydrological procésses in models. For instance, soil mdi'sture conditions -
are more important for agriculture han rainfall anomalies and, it seems, forecasts of rainfall

anomalies do not necessarily provide any indication of soil wetness.
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6. Potential impacts of land-surface modelling on model predictability

As discussed in the introduction, this study is, in part, dedicated to invesﬁgating the potential
impacts of land-surface modelling ‘on GCM predictability. A number of studies have repbrted
recently on this fopic (.e.g., Koster and Suarez 1996; Scott et al. 1997; and Koster aﬁd Suarez 2001).
Here, a preliminary anaiysis of the imﬁacts of land-surface modelling on model predictability by
lag—éorrelation caléulations is presented. The scasonal cycle 8 removed before the caléulation of
lag-correlation between two variables. With 204 samplves from the 17-yr model integfations used in
the calculation, a correlation coefficient exceeding about 0.14 is statistically significant wifh 95%
confidence (assuming the samples are independent). Lag correlations up to twelve months are

calculated in this study.

Figure 20 shows the three-month lag-correlation between soil moisture (mrso) -and surface -
evaporation (hfls) over the Australian region, with surface evaporation lagging soil moistﬁre. A
three-month lag is chosen here as this is the timescale réported by most AGCM seasonal forecasts -
(Frederiksen et al., 2001). There are refnarkable differences among AMIP2 models in te;ms of the
timescale over which soil moisture anomalies affect surface energy partitions. Lag correlations
between these two variables are, overall, positive over the continent, except for model C which has
negative correlations over part of the region. Among the 16 models, it is noted that models O and P,
together wifh models C, M and N, exhibit the lowest overall lag correlations. As will be shown later
(ref. Figure 25), such results from models O and P are directly due to the short retention period of
soil moisture anomalies in the land-surface schemes used in the models with a bucket-type

structure.
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The three-month lag correlations between soil moisture and precipitation anomalies (not shown) are

substantially lower than the results seen in Figure 20. There is no significant correlation in any of

| the 16 AMIP2 models considering a three-month lag. This is chiefly the result of other processes

affecting the simulation of precipitation in these AGCMS. However, soil moisture anom_a}ies do
affect surface temperatﬁre forecasts. Figure 21 shows that with a three-month lag, anomalous soil
moisture conditions are linked to the forecasts of surface temperature anomalies in a number of
models, particularly over the eastern part of the continent. Among the 16 models, models A, G and
K have the largest area of significant correlations and, again, models O and P with a bucket-type

land-surface scheme, as well as C, L and N, show lowest lag correlations.

The characteristic feature, exhibited by models O and P, can be largely explained by the short

retention time for soil moisture anomalies when simulated by simple bucket-type surface schemes.

.Figure 22 displays the auto-correlation of soil moisture anomalies across all the AMIP2 models.

Clearly, models O and P have the lowest auto-correlation on this time scale. Combining results -

from Figufes 20 to 22, it is possible to draw two complementary conclusions: (1) in models with a

‘ simple one-layer bucket land-surface scheme, the retention of soil moisture anomalies is much

shorter than others, resulting in a weak influence from land-surface conditions on the model

predictability on a seasonal time scale; (ii) predictability in GCM models is also affected by factors

other than the contribution from land-surface processes. For instance, model C shows high auto-

correlation of soil moisture anomalies in Figure 22, but it has consistently lower lag-correlations in

Figures 20 and 21, implying other factors in the model are contributing to this model’s low
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predictability. Jointly, these results prompt the need for further research in an effort to more fully

understand the mechanisms involved.

To further illustrafe the differences among simulations of soil moisture variations simulated in fhe
AMIP2 models, Figure 23 shows the soil moisture anomalies from three models (D, J and O) after
the removal of their simulated seasonal cycles. Results from the grid point located near 25°S and
135°E are analysed here. These three models have been selected to encompass the range of
simulated characteristics of interest in this diagnostic subproject. Model D represents models
’having high soil moisture auto-correlations, model J is t&pical of models with modest auto-
correlations, and model O illustrates r.ésults from models with muéh lower auto-correlations, as

seen in Figure 22.

These distinguishing features(ére clearly shown in Figure 23. Model D exhibits a slow variation of - *
soil moisture anomalies and it alsq shows a slow downward trend simulated in soil water which
coﬁtributes to the larée auto-correlations. Model J shows. moderate Vaﬁationé of soil moisture
conditions at this location, while model O with a bucket-type‘scheme exhibits rapid responses to
the meteorological forcing, with soil moisture anomalies respc;nding rapidly to rainfall anomalies
and evaporative demand (not shown). Thus, for this model, an anomalous wet condition decays

rapidly over a short time scale.
To illustrate the time scale of soil moisture processes simulated by each of the models, Figure 24

shows areally-averaged lag-correlations from zero to twelve months lag. Results are area-averages

over the Australian continent. Figure 24a shows large differences in models’ lag ‘correlations
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between soil moisture and evaporation. Some AMIP2 models show averaged correlations
exceeding 0.15 up to five and six months lag, while others exhibit low correlations within a month.
These differences are even more pronounced in the correlations between soil moisture and surface

temperature (Figure 24b).

The rapid decaying of correlations in models O and P seen in Figure “ 24 is COngistent with\the
features of soil moisture anomalieé simulated and already described for these two ‘models (Figure
25). Figure 25 demonstrates the ferﬁarkably different characteristics of soil moisture variations
simulated in-these two models as compared with the other AMIP2 models. These two models have -
thé fastest decayihg rates of soil moisture autofcorrelationé, underlining the short retention time of .

soil moisture anomalies and subsequently other surface climate anomalies. For example, Figure 25b -

shows 'that the retention of surface temperature anomalies in models O and P is shorter than for

most other models examined here. -

Overall, the lag and auto-correlation analysis of AMIP2 models clearly shows the potential of land- -

surface schemes to influence modelsimulated characteristics of surface climate anomalies. The

impacts of different complexity of land-surface modelling on the model predictability have also -

been illustrated, particularly by comparing the behaviours of AGCMs coupled to the simplest

(bucket-type) land-surface scheme with the performance of models incorporating more complex

~ surface representations.
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7. Discussion and Conclusions

This report has presented the results of analysing 16 AMIP2 models over the Australian region. The
study has focused on assessing the surface climate and surface fluxes simulations in the current
AGCMs forced by observed SSTs and sea-ice. The goals have been (i) to explore the impacts of

land-surface modelling on the skill of surface climate simulations and (ii) to evaluate the potential

r

of land-surface complexity to affect model predictability.

In this preliminary alesis, Australian Bureau of Meteorology (BoM) observational rainfall,

“temperature and surface evapotranspiration datasets have been employed to evaluate the surface

climatologies sﬁnulated.by the 16 fhodels. The Linear Error in Probability Space (LEPS) score has
been used to aséess the skill of the models in simulating surface climate anomalies for the 17-year .
AMIP2 perioci (1979 to 1995). This study has quantified the skill of the model simulations using
the measurem.e-nt.sA including biases, rmse and spatial wrrelations. A range bf model differences
have been described and linked to the complexity in the model’s land-surface schemes. For
instance, results tend to suggest’that models using a sﬁall number of soil layers (1 or ‘2-) in Vthe‘
calculation of surface ene rgy' bélance generate poorer simulations of Tmax and Tmin overhth(‘ef
region than those with more soil layers. The connection between model skhl in simulating surfaée
climate anomalies and surface flux anomalies has been explored. It is found that in the austral
summer, the_ skill of models in simulating precipitation anomalies is correlated to their skill in _
simulating flux anomalies. HO\I;/ever, these correlations become weaker in the winter séason,

implying that the influence of land-surface modelling is more significant then.
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Lag-correlation analysis has réveal‘ed that the characteristics of climatic “memory” from land-
surface processes (e.g. soil moisture) differ‘among the sixteen deels: some models show rapid
feedback processes between the land-surface and the overlying atmosphere, while others exhibit
slowly varying processes in which anomalous surface conditions have influences over longer time
' periods. It was found that models with simple bucket-type sCherﬁes tend to show rapid decay rates -
in soil moisture anomalies, leading to much weaker lag correlations bet\f\(een soil moisture -
conditions and surface climate anomalies. Qverall, this analysis suggests that land-surface
modelling has the pétential to affe(_:t AGCM pfedictability on seasonal and even longer time s_calés.

This impact on the predictability skill is itself a function of the land-surface scheme characteristics. -

It should‘be noted that the current study is only a first step towards a better understanding of the
role of land-surface modelling in climate simulations. This report has qﬁantiﬁed model skill and
explored differences among models and di;crepancies between simulations and observations.
Ongoing research will coﬁtinue to try to determine why the models are different, ana to what extent
different model performahce§ can be linked tb the complexity of their land-surface repr‘esentat‘ionsr.
More detailed analyses.such as those reported in Kos_ter and Milly (1997), Gedney et al. (2000) and
Koster and Suarez (2001) will be pursued in the future. With the continuing relgasé of AMIP2 “
model resﬁlts, including thoée from the BMRC Atmospherié Model (BAM) AMiPZ experiments,

analysis will become more inclusive and more geographically extensive.
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Table Legend:

Table 1: Models used in the analysis

"Model
CCCMA
CCSR
CNRM
DNM
ECMWF

GLA

NCAR
NCEP
PNNL
SUNYA
UGAMP
UIUC
UKMO

YONU

{ Full name

Canadian Centre for Climate Modelling and Analysis

Center for Climate System Research

Centre National de Recherches Meteorologiques

Department of Numerical Mathematics

European Centre for Medium- Range Weather Forecasts
Goddard Laborétory for Atmospheres

Japan Meteorological Agency

Meteorological Reseérch Institute

National Center for Atmospheric Research

National Centers for Environmental Predictibn

Pacific Northwest National Laboratory

State University of ‘Ne“‘/ York at Albany

The UK Universities‘ Global Atmospheric Modelling Programme
University of Illinois at Urbana-Champaign

United Kingdom Meteorological Office

Yonsei University

Country
Canada
Japan
France

Russia

UK

USA

' Japan

Japan
UTSAA‘
USA"
USA’

USA
USA

Korea
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Table 2. Model codes and features of the sixteen AMIP2 models analysed in this report.

Code | Resolution Land-surface components No. of layers in | No. of layers in
Soil model Canopy representation soil temperature | soil moisture
complexity calculations calculations

A T42L18 bucket const. canopy resistance 3 1

B. T63L45 force-restore intercept. + transpiration 2 2

c 4x5 L21 ml}]ti-laye;’ diffusion | intercept. + transpiration 24 24

D T159L50 multi—layer diffusion | intercept. + transpiration 4 4

.E T63L30 multi-layer diffusion | intercept. + transpiration 4 3

4F T421L.18 multi-layer diffusion | intercept.+ transpirétiqn +CO, 6 6

G T62L18 mu]ti-lay:er diffusion | intercept. + transpifati on 3~ 2

H T42L18 multi-layer diffusion | intercept. + transpiration 2 3

I 2.5x3.75 L58 | multi-layer diffusion | intercept.+ transpiratiqn +CO, 4 | 4

J 2.5x3.75L19 | multi-layer diffusi‘on intercept.+ transpiration +CO, 4 4

K T47L32 multi-layer diffusion | intercept. + transpiration 3 : 3 |

L 4x5 L20 multi-layer diffusion | intercept. + transpiration 2 3

M T42L30 multi-layer diffusion | intercept. + transpiration 3 3

N -T42L1 8 multi-layer diffusion | intercept.+ transpiratioﬁ +CO, 6 ‘ 6

° 4x5 124 bucket no 1 1

P 4x5 L15 bucket no 1 1

-~
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Figure Legend

Figure 1: Observed surface climatology over r the Australlan region from the BoM’s observational
datasets. (a) Precipitation climatology (mm month’! ) in DJF for the pertod of 1950-1999; (b) as (a)
but for JJA; (c) Monthly mean daily maximum surface temperature climatology (°C) in DJF for the
period of 1950-1999; (d) as (c) but for JJA; (e) Monthly mean daily minimum surface temperature
climatology (°C) in DJF for the penod of 1950-1999; (f) as (e) but for JJA; (g) Surface
evapotranspiration climatology (W m 2) in DJF from the datasets of Wang et al. (2001); (h) as (g)
but for JJA.
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Figure 2: Climatological biases of pfecipitation simulated by 16 AMIP2 models against the BoM
observations (mm month''). '
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Figure 3: Root-mean-square-error (rmse) of precipitation climatology simulated by 16 AMIP2
models against the BoM observations (mm month') over the Australian region. The heavy dashed
line represents the averaged rmse of all the 16 models. The heavy solid line represents the rmse of
results from poor-man ensembles of the 16 models. : ' :

Precipltation Climatclogy
‘(rmse wilh BoMdala)

-
oy
3 =)

RMSE (M month™)

QY

FEigom-3: Rbot;—’mmn—pqqﬁé-e_mr;( erree ) of pmcl pitation climas lgy. ggai}g:t!'g:‘BpMi obeetvations( mm/ionthy..

39



Figure 4: Spatial correlations of precipitation climatology simulated by 16 AMIP2 models against
the BoM observations (mm month') over the Australian region. The heavy dashed line represents
the averages of all the 16 models. The heavy solid line represents the results from poor-man
ensembles of the 16 models.
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Figure 5: As Figure 2 but for monthly mean daily maximum surface temperature (K).
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Figure 6: As Figure 3 but for monthly mean daily maximum surface temperature (K).
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Figure 7: As Figure 4 but for monthly mean daily maximum surface temperature (K).
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Figure 8: As Figure 2 but for monthly mean daily minimum surface temperature (K).
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8(b) JJA.
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Figure 9: As Figure 3 but for monthly mean daily minimum surface temperature (K).
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Figure 10: As Figure 4 but for monthly mean daily minimum surface temperature (K).
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Figure 11: As Figure 2 but for surface temperature daily range as the difference between Tmax and
Tmin (K). -
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11(b) IJA

[
I 1 O O 2
s 89N 1)

PR U I SO A ]

N O I X I
[ORCE I B |
TEN I Y N I

Figurs: 11{b}: Doty Wmperature rangs blos in A Unit: K.

50



Figure 12:
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Figure 13: As Figure 3 but for surface latent heat flux (W m 2),
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Figure 14: As Figure 4 but for surface latent heat flux (W mi).
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Figure 15: LEPS score of 16 AMIP2 models in simulating precipitation anomalies in the 17-yr
(1979-1995) period. The BoM observational dataset (1950 to 1999) is used in the calculation.
LEPS score in the diagram is divided by 10 with a range of 10 to 10.
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Figure 16: As Figure 15 but for Tmax.
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Figure 17: As Figure 15 but for Tmin.
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Figure 18: (a): Correlation of -each of the 16 models’ LEPS scores for the simulation of
precipitation anomalies and their scores for the simulation of surface evaporation anomalies over
the Australian continent. The heavy dashed line represents the averages of all the 16 models. The
heavy solid line represents the results from poor-man ensembles of the 16 models; (b): As (2) but

for precipitation and total soil moisture.
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Figure 19: Scatter plots of the correspondence between a single model’s scores in éimulating
precipitation anomalies and surface evaporation anomalies over the Australian region. Each open
circle represents results in a single land grid point over the region. (a): DJF; (b): JJA.
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Figure 20: Three-month lag correlations betwéen total soil moisture anomalies and surface
evaporation anomalies, with surface evaporation lagging soil moisture. The seasonal cycle has been
removed before the correlation calculations. The value of 0.14 roughly corresponds to a 95%
confidence level with 204 samples.
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Figure 21: As Figure 20 but for the correlation between total soil moisture and surface air
temperature. '
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Figure 22: As Figure 20 but for the auto-correlation of total soil moisture anomalies.
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Figure 23: Variation of soil moisture anomalies after removmg the seasonal cycle sunulated in

three models over the location 25 °S and 135 °E.
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Figure 24: (a): Area-averaged lag correlations between total soil moisture anomalies and surface
evaporation anomalies over the Australian region, with zero to twelve months lag and surface
evaporation lagging soil moisture. (b): As (a) but for soil moisture and surface air temperature.
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Figuré 25: As Figure 24 but for auto-correlations of total soil moisture (a) and surface .air

temperature (b).
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